화학 시장의 생성형 AI, 2030년까지 28.3% 성장 전망, Univdatos Market Insights 발표

저자: Vikas Kumar

2023년 11월 15일

보고서의 주요 내용:

  • 생성형 AI 모델은 새로운 설계의 성능을 예측하고 개선 영역을 식별하여 반응 최적화 및 공정 설계와 같은 화학 공정을 최적화하는 데 사용할 수 있습니다.
  • 생성형 AI 모델은 재료 발견 프로세스를 자동화하고 시뮬레이션을 통해 재료의 속성을 최적화함으로써 화학 합성 및 생산에 필요한 시간과 자원을 줄일 수 있습니다.
  • 생성형 AI 모델은 신약 및 재료 개발을 가속화하는 데 사용될 수 있으며, 기업이 제품을 보다 빠르고 효율적으로 시장에 출시할 수 있도록 합니다.
  • 생성형 AI 모델은 필요한 재료의 양을 줄이고 제품의 재활용성을 향상시킬 수 있는 개선된 기계적 특성 및 가스 차단 특성을 가진 새로운 재료를 개발하는 데 사용될 수 있습니다.
  • 생성형 AI 모델은 새로운 재료의 안전성과 독성을 예측하는 데 사용될 수 있으며, 기업이 더 안전하고 환경 친화적인 제품을 개발할 수 있도록 합니다.

Univdatos Market Insights의 새로운 보고서에 따르면 화학 시장의 생성형 AI는 2022년에 12억 달러로 평가되었으며 기술 발전으로 인해 예측 기간(2023-2030) 동안 약 28.3%의 꾸준한 성장률을 보일 것으로 예상됩니다. 화학 산업의 생성형 AI는 새로운 화학 화합물을 생성하거나 그 특성을 예측할 수 있는 AI 모델의 사용을 의미합니다. 이러한 모델은 알려진 화학 화합물과 그 특성에 대한 대규모 데이터 세트에 대해 훈련되어 새로운 화합물에 대한 예측을 하고 잠재적인 응용 분야를 제시할 수 있습니다. 화학 공정을 최적화하고 폐기물을 줄이려는 수요가 증가하면서 시장이 활성화되고 있습니다.

샘플 PDF 액세스 - https://univdatos.com/get-a-free-sample-form-php/?product_id=47876

화학 산업은 새로운 제품을 개발하고 기존 제품을 개선하기 위해 끊임없이 새롭고 혁신적인 화합물을 찾고 있습니다. 생성형 AI는 추가 연구를 위한 잠재적 후보를 식별하고 새로운 응용 분야를 제안함으로써 이 프로세스를 가속화하는 데 도움이 될 수 있습니다. 또한 생성형 AI 모델은 알려진 화학 화합물과 그 속성에 대한 대규모 데이터 세트에 대해 훈련되어 새로운 화합물에 대한 예측을 하고 잠재적인 응용 분야를 제안할 수 있습니다. 따라서 예측 모델링에 대한 필요성이 시장 성장을 가속화하고 있습니다.

화학 산업 응용 분야에서 다양한 ML 범주의 분포.

최근 개발 사항은 다음과 같습니다.

  • 2021년 일본에서는 도쿄 공업 대학의 연구원들이 생성형 AI 모델을 사용하여 리튬 이온 배터리에 사용하기 위한 새로운 재료를 설계하여 성능과 효율성이 향상된 재료를 개발했습니다.
  • 2021년 미국에서는 미시간 대학의 연구원들이 생성형 AI 모델을 사용하여 리튬 이온 배터리 제조 공정을 최적화하여 보다 효율적이고 비용 효율적인 공정을 개발했습니다.
  • 2022년 독일 정부는 AI 전략의 일환으로 AI 연구 개발에 10억 유로를 투자한다고 발표했습니다. 이 투자는 의료, 운송 및 제조와 같은 분야에서 AI 기술 개발을 지원하는 것을 목표로 합니다.
  • 2022년 미국 정부는 AI 이니셔티브의 일환으로 AI 연구 개발에 20억 달러를 투자한다고 발표했습니다. 이 투자는 의료, 운송 및 국가 안보와 같은 분야에서 AI 기술 개발을 지원하는 것을 목표로 합니다.
  • 2023년 4월, 미쓰이 화학과 IBM Japan은 IBM Watson Discovery를 Generative Pre-trained Transformer(GPT)로 알려진 생성형 AI와 통합하여 새로운 응용 분야의 발견을 가속화하고 개선하기 위해 협력했습니다. 이 협력은 디지털 전환(DX)을 사용하여 비즈니스 운영을 개선함으로써 미쓰이 화학 제품의 매출과 시장 점유율을 높이는 것을 목표로 합니다.
  • 2023년 5월, 생물학을 사용하여 약물 개발을 산업화하는 임상 단계의 선도적인 TechBio 회사인 Recursion은 AI 기반 약물 발견 분야에서 Valence와 Cyclica라는 두 회사를 인수했다고 발표했습니다.

결론

생성형 AI는 재료의 발견 및 최적화 가속화, 공정 효율성 개선, 비용 절감, 생산성 향상, 지속 가능성 개선 및 안전성 강화를 통해 화학 시장에 혁명을 일으킬 잠재력이 있습니다. 에너지 밀도 및 기계적 특성과 같은 개선된 특성을 가진 새로운 재료를 설계하기 위해 생성형 AI 모델을 사용하면 보다 효율적이고 지속 가능한 화학 제품을 개발할 수 있습니다. 또한 생성형 AI 모델을 사용하여 화학 공정을 최적화하고 폐기물을 줄이며 제품의 재활용성을 향상시킬 수 있습니다.

콜백 받기


관련 뉴스